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Abstract 

When a public health emergency, such as an anthrax attack, happens in many areas, it is vital to deploy the medical supplies to the 

affected people quickly. In this condition, emergency facilities, which provide medical supplies, play an important role in rescue 

management. The decision of where to locate the emergency facilities becomes very critical, as it determines the efficiency and 

effectiveness of the emergency management. In this paper, a multi-objective programming model that balances the total cost of 

emergency facilities and effect of rescue is proposed, and the effect of rescue is measured by the ratio of the arrival quantity of the 

rescue material to the demand. And then the model is solved by the Greedy Dropping heuristic after the multi-objective function is 

transformed into a single-objective. Finally, a practical example is given to illustrate the application of the model.  
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1 Introduction 

 
In the past few years, a number of public health 

emergencies, such as, the anthrax-related exposures in 

Florida [1], the SARS in 2003, the pig flu in 2009, the 

H7N9 avian influenza in 2013, the Ebora virus in West 

Africa in 2014 have been witnessed by the world. In the 

event of these public health emergencies, a large amount 

of emergency materials should be provided to the 

exposed individuals to minimize the number of casualties 

[2]. In this condition, the emergency logistics network, 

which is made up of the points of dispensing, emergency 

centres, and replenishment sources should be established 

[3, 4]. In the emergency logistics network, the location of 

dispensing points, which provide medical supplies to the 

effected people, play an important role in rescue 

management. The decision of where to locate the 

dispensing points become very critical, as it determines 

the efficiency and effectiveness of the emergency 

management. As a result, the problem of locating 

dispensing points can be taken as the emergency facility 

location problems.  

Facility location problems had been widely 

addressed in the literature. Daskin [5] and Drezner [6] 

defined that facility location problems deals with 

decisions of finding the best (or optimal) configuration 

for the installation of one or more facilities in order to 

attend the demand of a population. Larson [7-8] 

developed a set of spatial queuing models, which 

calculated the steady-state busy fractions of servers on a 

network once their positions had been specified. Orhan 

and Esra [9] formulated the MCLP in the presence of 

partial coverage and developed a solution procedure 

based on Lagrangean relaxation. Marianov and ReVelle 

[10] developed a model of queuing maximal availability 

location problem (Q-MALP) based on maximal 

availability location problem (MALP). But all of these 

models were within a deterministic framework. Daskin 

[11] presented the maximum expected coverage location 

problem (MEXCLP) in 1983, which was a current 

impetus to probabilistic facility location model. Chen and 

Lin [12], Snyder and Daskin [13] gave research on 

facility location problems with uncertainties, and then 

Snyder [14] proposed a complete review on facility 

location problems with uncertainties.  

In recent years, the topic of emergency facility 

location has received substantial attention. According to 

Jia et al. [15], emergency facility location problems could 

be divided into three types depending on the objective 

function of the location models: covering models, p-

median models, and p-centre models. And then Jia et al. 

[16] developed a new facility location model for the 

medical supply distribution for large-scale emergencies. 

Alminana and Pastor [17] presented the specialized set-

covering formulations, and solved the formulations by 

branch and bound linear optimization. Fisher and Kedia 
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[18] developed the Heuristics Algorithm for the solution of 

this problem. Hu, et al [19] formulated a mathematical 

model which integrates the traditional location selection 

models, such as the biggest cover mode, the p-center 

model and the p-median mode, and the principles of 

fairness and efficiency for the emergency center location 

were considered. Xi et al [20] developed a modified p-

median problem model that accounts for rescue time 

limitations, and they developed a variable neighbourhood 

search- (VNS-) based algorithm for the model 

considered. 

Although there many researches on normal facility 

location problems, there are a few of those on the location 

problem of emergency facility under the environment of 

diseases diffusion. Because of the special functions of 

emergency response system, some special requirement 

must be satisfied and the restrictions are more rigorous. 

Thus the traditional facility locations model can not solve 

the location problem of emergency facility. Some 

improvements on the original model are needed. The 

paper proposed a multi-objective programming model 

under the environment of diseases diffusion which 

balances the total cost of a rescue centre and the effect of 

rescue. The demand for the rescue materials is calculated 

by an indefinite integral, and the effect of rescue is 

measured by the ratio of the arrival quantity of the rescue 

material to the demand.  

This paper is organized as follows. Model 

formulation is present in section 2. A Greedy Dropping 

Heuristic Algorithm is introduced in section 3. A 

numerical study is presented to illustrate the feasibility 

and effectiveness of this model in Section 4. Finally, 

concluding remarks are summarized in Section 5. 

 

2 Model formulations  

 

2.1 ASSUMPTIIONS 

 

To smooth the progress of model formulation in the 

following subsections, five assumptions are postulated. 

 (1) The changes of needs for the emergency supplies 

on disaster areas are based on the proliferation of 

dangerous source, and they are on a function of time. 

(2) In the period of decision-making, the dispensing 

point is set up in every time unit according to the demand 

of the affected area, and it is opened dynamically. 

(3) Once the dispensing point is opened up, it will 

remain open in the subsequent period. As the cost of re-

location and establishment of dispensing point (that is, 

the transfer cost) is very high; 

(4) The dispensing point reserves limited emergency 

materials, but it should try all best meet all the needs of 

the disaster areas; 

(5) The transportation cost of candidate dispensing 

point at the disaster area is of prior determination and it 

doesn’t change according to time. 

 

 

2.2 FORMULATION OF AN EMERGENCY  

       FACILITY LOCATION MODEL  

 

We consider a set I of demand points and a set J of 

eligible dispensing points in order to formulate the 

covering dispensing point location model for large-scale 

emergencies. And the mathematical formulation of the 

problem and the notation are given below. 

     Sets and parameters: 

   h, the maximal number of dispensing points that can 

be placed; 

ijf
, the transporting cost every unit goods from 

eligible dispensing point j to demand point i; 

jc
, the fix fee of establishing the dispensing points in 

the demand area J; 

C, the total fee of establishing the dispensing points; 

jo
, the fee for the maintenance of dispensing points J 

every year; 

O, the total fee for the maintenance of dispensing 

points; 

      jl
, the total amount of emergency material at the J 

dispensing point 

      ijka
, the amount of emergency rescue material from 

eligible dispensing points j to demand point I during the 

kth period; 

ikc , the total quantity of needed relief materials at the 

demand point I during the kth period; 

q, the shortage cost of per unit emergency materials. 

jx
: If the dispensing point J is selected, jx

=1; 

else jx
=0, j=1, 2, J. 

      The objective aims at minimizing the total cost of 

emergency rescue system and maximizing the effect of 

rescue. So the double object function of dispensing point 

can be expressed as: 

1 1 1 1 1 1 1 1

min ( )
J J K I J K I J

j j j j ijk ij ik ijk

j j k i j k i j

V c x o x a f c a q
       

       
        (1) 

1 1 1 1 1

max ( ) /
K I J I k

j kij ik

k i j i k

R x x a c
    

 
                             (2)            

      The objective function (1) aims at minimizing the 

total cost of the emergency system, and the total cost 

includes the transportation cost of the emergency 

materials, the fixed costs for the establishment of a new 

dispensing point, the total annual operating cost of every 

year, and the shortage cost. The objective function (2) 

targets on maximizing the effect of rescue which can be 

expressed by the ratio of the arrival quantity of the rescue 

material to the demand.  

Subject to: 
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j
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


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 0,1jx 
                                                              (7) 

0ijka 
                                                                 (8) 

1

J

j j

j

c x C



                                                              (9)  

1

J

j j

j

o x O



                                                            (10) 

1 1 1

I I J

ik j j

i i j

c x l
  

 
                                                   (11) 

Constraint (3) states that the total quantity of relief 

materials are needed at the demand point I during the kth 

period, which can be calculated according to the spread 

discipline of dangerous source and the practical situation 

of every affected area. Constraint (4) restricts the amount 

of rescue materials supplied by every dispensing point. 

Constraint (5) shows that the needs on the rescue 

materials at every affected area should be less than the 

supply of emergency goods provided by the dispensing 

point. Constraint (6) is used to represent that there are at 

most h rescue centres to be located in a set J of possible 

locations. Facilities Location Model usually limits the 

number of rescue centres required in the demand area. 

Constraint (7) is the bound of decision variables. 

Constraint (8) restricts that the volume of emergency 

materials traffic are non-negative. Constraints (9) states 

that the fixed costs for the establishment of a new 

dispensing point do not exceed the estimated costs, and 

constraint (10) reveals that the total annual operating cost 

for the establishment of dispensing point do not excess 

the general estimated cost. Constraint (11) shows that the 

total quantity of needed relief materials should be less 

than the total stock of the selected dispensing point. 

 

3  A Greedy Dropping Heuristic Algorithm 

 

Generally speaking, the mathematical model of the multi-

object programming can be described as: 

  min ( )V x , max ( )Z x  

 , , ( ) 0, ( ) 0, 0, , .n

i i jX x x R g x h x x i j     
 

Where x is n-dimensional vector variables, ( )v x and Z(x) 

are the objective functions. 
( ) 0ig x 

 is the inequality 

constraint equation, and 
( ) 0ih x 

is the equality constraint 

equation. In the n-dimensional space, m + n restrictive 

conditions and nonnegative constrains form a viable 

solution for X. domain. The multi-objective planning 

solution can be achieved through multi-objective 

planning into a single objective planning. The commonly 

used conversion methods are: weighted method, 

constraint method, Phillips linear multi-target, Xlieni 

linear multi-target methods, and so on. 

For the single object programming model of facility 

location, the solving Algorithm is the accurate methods 

and the heuristic methods. And the accurate methods and 

the heuristic methods have the potential to generate 

efficient solutions to the considered facility location 

problem. However, the accurate methods do not provide 

information on how far the solutions are possibly away 

from optimality. In this section, we develop a heuristic 

method, which is called the Greedy Dropping Heuristic 

Algorithm, in addition to generating good solutions to the 

location problems, also provides bounds on the optimal 

objective value of the maximal covering location 

problem. The procedure of the Greedy Dropping 

Heuristic Algorithm is as follows. 

Step1: initialization, setting the cycle variables k = n, 

selecting all the dispensing points, the demand point will 

be assigned to a dispensing point in accordance with the 

principle of minimum cost;  

  Step2: remove a dispensing point, which meets the 

following conditions: if it is removed and its clients are 

re-assigned, the augmenter of the total cost is the 

smallest. Then set k = k-1;  

  Step3: duplicate step2, until k = p.  

  Greedy heuristic algorithm does not necessarily get 

the optimal solution, but when the data volume is 

tremendous, the calculation speed will be relatively 

quick. 

   

4 A case study  

 

To illuminate the validity of the model, an example is 

introduced. Suppose that there are eight disaster areas 

which suffer from the measles, and three dispensing 

points will be set up to supply the emergency materials to 

the eight disaster areas. After inspections, there are five 

candidate dispensing points. The transport cost from 

dispensing point to demand point is indicated in Table 1. 

The cost and maximize storage of each dispensing point 

is shown in Table 2.  

 
TABLE 1 Transport cost from dispensing point to each demand point 

    area i 

 

point  j 

 

1 

 

2 

  

3 

 

4 

 

5 

 

6 

 

7 

 

8 

      1 7 8 5 6 8 9 5 6 

      2 13 12 11 14 5 4 4 3 

      3 15 16 12 12 6 5 7 12 

      4  4 6 5 4 14 12 11 15 

      5 6 7 5 6 4 3 4 6 

      6 5 6 11 15 8 12 15 17 
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TABLE 2 Cost of establishment and maintenance for each dispensing 
point 

Point  j       
jc  jo           

jl   

    1       1800 130        86 

    2       600 80        11 

    3       750 90        15 

    4       1750 110        84 

    5       740 85        14 

If one area suffers from the measles, the population in 

that area will be composed of three groups of individuals: 

susceptible (S), infectious (I) and recovered (R), whose 

dynamics are modelled by the standard SIR equations. 

We suppose that the emergency rescue centres can 

provide the vaccination to the demand area in order to 

reduce the number of infection people. When pulse 

vaccination is incorporated into the SIR model [21], the 

system can be rewritten as follows: 

 

0

( ) ( ) ( ),

( )

, 0,1,2,

n

dS
m I m S p S nT t nT

dt

dI
IS m g I

dt

t nT n n

 








 
      

 
   
  

 


                        (12)               

where
0

( ) lim ( ), 0S nT S nT


 


   . T is the period 

of pulse vaccination and   is the rate of susceptible 

becoming infectious. g represents the recovery rate of 

infection. m stands for the born rate, which is equal to 

death rate. p is the rate of vaccination. 

In the time interval 0 ( 1)t n T t nT   
 an “infection-

free” solution must satisfy: 

0( )

0
( ) 1 (1 ) ( ),

(1 ) (1 )

( ) 0,

mT mT
t

m t t mT

mT mT

pe pe
S t e p e t nT

e p e p

I t

      
   



        (13)                          

From the above formula, we can get the following 

relations: 

( )( 1)

( 1 )

mT

mT

mT p e mpT m g

mT p e 

   


 
 

Suppose that 
0 ( )s s t is the number of susceptible S after 

the (n-1) Th vaccination pulse at time
0 ( 1)t n T  , so we 

can get the following solution from formula (13): 
0

0

( )

0 0

( )

0

1 (1 ) , ( 1)
( )

(1 )(1 (1 ) ),

m t t

m t t

S e t n T t nT
S t

p S e t nT

 

 

       
  

     

     (14) 

In this article we use typical parameters that are 

representative of measles dynamics [21], as follows: m = 

0.02,   = 1800, g = 100. It is useful to note that for the 

standard measles parameters [22], p=0.95. So through the 

above formula we can get 5.6T  . In this condition, we 

set T=5. So the first dispensing point will be opened at 

t=0, and the second is t=5. According to the formula (14), 

as well as with the population, economic development, 

disaster degree of affected areas, the vaccine demand 

function is obtained. Then the demand of the affected 

area is counted. The demand function and demand of 

every affected area is displayed in Table 3. There will be 

many periods, we only consider the two periods in order 

to make the problem simple. We also suppose that the 

rescue effect should be more than 88%.So we can 

transform the objective function (2) into the constraint 

condition which can be described as: 

1 1 1 1 1

/ 88%
K I J I k

j kij ik

k i j i k

x a c
    

 
. 

TABLE 3 Demand function and demand of every affected area 

Area j Ci1(t) Ci1 Ci2(t) Ci2 

  1 8.2(1-0.05exp(-

0.02t)) 

39.032 8.2(1-0.9523exp(-

0.02(t-5))) 
3.84 

  2 7.5(1-0.05exp(-

0.02t)) 

35.7 7.5(1-0.9523exp(-

0.02(t-5))) 
3.5122 

  3 9.3(1-0.05exp(-
0.02t)) 

44.268 9.3(1-0.9523exp(-
0.02(t-5))) 

4.3551 

  4 4.5(1-0.05exp(-

0.02t)) 

21.42 4.5(1-0.9523exp(-

0.02(t-5))) 
2.1073 

  5 0.24(1-

0.05exp(-0.02t)) 

1.1424 0.24(1-0.9523exp(-

0.02(t-5))) 
0.1123 

  6 1.5(1-0.05exp(-
0.02t)) 

7.14 1.5(1-0.9523exp(-
0.02(t-5))) 

0.7024 

  7 1.8(1-0.05exp(-

0.02t)) 

8.568 1.8(1-0.9523exp(-

0.02(t-5))) 
0.8429 

  8 0.78(1-

0.05exp(-

0.02t)) 

3.7128 0.78(1-0.9523exp(-

0.02(t-5))) 

0.3653 

 

        Additionally, there are other conditions: h=6, 

O=5500, C=700, q=6.1. Once the dispensing point is set 

up in the early time, it will not be closed later. All of the 

decision cases can be described in Table 4. In connection 

with all the options, the total cost of the emergency 

rescue system can be stated in Table 5, and the rescue 

effect of the emergency rescue system is showed in Table 

6.So the optimal solution is: the dispensing point 1 and 6 

are built at t = 0, the point 5 is set up at t = 5. The total 

cost of the emergency rescue system is 5499.3, and the 

rescue effect of the emergency rescue system is 88.4%. 
 
TABLE 4 All the decision case 

Possible point  during the 

period of 1th 

Possible point during the 2th 

period 

 

(1,4) 

(1,4,3) 

(1,4,5) 

(1,4,6) 

 

(1,6) 

(1,6,3) 

(1,6,4) 

(1,6,5) 

 

(4,6) 

(4,6,1) 

(4,6,3) 

(4,6,5) 
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TABLE 5 Total transportation cost of all the decision case 

Possible 

point 

during the 

first 

period  

Total 

cost 

during 

the first 

period 

Possible 

point 

during the 

second 

period  

Total cost 

during the 

second 

period  

Total cost 

during the 

two periods 

 

(1,4) 

 
4630.2 

 

(1,4,3) 1037.5 5667.7 

(1,4,5) 878.1 5508.3 

(1,4,6) 1963.0 6593.2 

 

(1,6) 

 
4621.2 

(1,6,3) 1037.5 5658.7 

(1,6,4) 1951.4 6572.6 

(1,6,5) 878.1 5499.3 

 

(4,6) 

 

4714.2 

(4,6,1) 2033.0 6747.2 

(4,6,3) 1037.5 5751.7 

(4,6,5) 878.1 5592.3 

 

TABLE 6 Rescue effect of all the decision case 

Possible point 

during the 

first period  

Rescue effect 

during the 

first period  

Possible point  

during the 

second period  

Rescue effect 

during the 

second period  

 

(1,4) 

 

100% 

(1,4,3) 94.71% 

(1,4,5) 88.4% 

(1,4,6) 100% 

 

(1,6) 

 

98.77% 

(1,6,3) 94.71% 

(1,6,4) 100% 

(1,6,5) 88.4% 

 

(4,6) 

 
97.53% 

(4,6,1) 100% 

(4,6,3) 94.71% 

(4,6,5) 88.4% 

 

 

 

5 Conclusions 

 

The location of emergency facility is an important 

research domain in the field of disaster relief. In view of 

the characteristics of urgency, the location of emergency 

facilities plays an important role in rescue management, 

and it determines the efficiency and effectiveness of the 

emergency system. A reasonable emergency facility 

location decision can improve the efficiency and 

effectiveness of emergency management. In this paper, a 

multi-objective programming model that balances the 

total cost of emergency facility and the effect of rescue is 

proposed. The demand for the rescue materials is 

calculated by an indefinite integral, and the effect of 

rescue is measured by the ratio of the arrival quantity of 

the rescue material to the demand. The model is solved 

by the Greedy Dropping heuristic. Through numeric 

simulation, the model is proved to be effective, and the 

theoretical reference can be used by the decision makers 

for coping with the public health emergencies.  
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